وبلاگ تخصصی مهندسی متالورژی صنعتی

مصطفی سخراوی کارشناس مواد و متالورژی صنعتی و مسئول امور آموزشی واحد علوم و تحقیقات خوزستان

ممانعت كننده ها Inhibitors

ممانعت كننده ها افزودني هايي هستند كه با ايجاد تغيير و تحول بر روي سطح فلزات ، محيط و يا هر دو خوردگي را تحت كنترل در آورده ، شيوه عمل آنها ايجاد تغييرات در واكنش هاي آندي ، كاتدي و يا هر دو آنها است . ممانعت كننده هاي بسيار زيادي  با تركيبات مختلف موجود مي باشند ؛ اكثر اين مواد با آزمايشات تجربي پيدا شده  و اصلاح يافته اند و بسياري از آنها با نام هاي تجاري عرضه مي گردند و تركيب شيميايي آنها مخفي نگه داشته مي شود . به همين دليل فرآيند حفاظت به اين روش به طور كامل مشخص و روشن نيست . ممانعت كننده ها را مي توان بر حسب مكانيزم و تركيب طبقه بندي نمود . با توجه به تركيب ممانعت كننده ها به دو دسته اصلي معدني ( Inorganic) و آلي ( Organic) تقسيم مي گردند . بر حسب مكانيزم عمل دو نوع مشخص بازدارنده  وجود دارد :
ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

اندازه گيري ضخامت توسط امواج ماوراء صوت

ضخامت سنج هاي ماوراء صوت ( Ultrasonic ) براي اندازه گيري ضخامت مواد از يك سمت آنها ، استفاده مي شوند. اولين ضخامت سنج تجاري ، از اصول كاري ردياب هاي صوتي  ( Sonar ) پيروي مي كرد ، كه در سال 1940 معرفي شد . وسيله هاي كوچك قابل حمل كه تنوع در كاربرد داشتند از 1970 متداول شدند. اخيرا پيشرفت در تكنولوژي ميكروپروسسورها منجر به مرحله جديدي از عملكرد پيچيده و كاربرد آسان اين وسيله ها شده است. كار تمامي سنجه هاي ماوراء صوت بر پايه اندازه گيري بازه زماني عبور پالس هاي فركانس صوتي از ميان ماده مورد آزمايش است . فركانس يا گام اين پالس هاي صوتي فراتر از حد شنوايي انسان است ، به طور كلي يك تا بيست ميليون سيكل در ثانيه ، در مقابل براي گوش انسان حد ، بيست هزار است . اين امواج فركانس بالا توسط وسيله اي توليد و دريافت مي شوند كه مبدل ماوراء صوت ناميده مي شود ؛ كه انرژي الكتريكي را به لرزش هاي مكانيكي تبديل مي كند و بلعكس .


ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

فولاد هاي مقاوم حرارتي

امروزه فولادها در شرايط متغير و گسترده اي ؛ شامل محيط هايي با دماي بالا و خورنده تحت شرايط تنش استاتيكي و ديناميكي بكار مي روند. از قبيل دريچه هاي موتور هواپيما ، حامل هاي كوره ، رتورت ها ، واحدهاي كراكينگ نفت و توربين هاي گازي . سه مشخصه براي فلزاتي كه در دماي بالا به كار مي روند ؛ مورد نياز است :

1-  مقاومت به اكسيداسيون و پوسته شدن

2- حفظ استحكام در دماي كاري

3- پايداري ساختار ؛ با توجه به رسوب كاربيدها ، كروي شدن ، كاربيدهاي سيگما، تردي بازپخت

ديگر ويژگي ها نيز ممكن است در كاربرد مهم باشند ؛ همچون مقاومت ويژه و ضريب حرارتي براي اهداف الكتريكي ، ضريب انبساط براي واحدهاي ساختماني و مقاومت به نفوذ در اثر پديده سوختن در بعضي كاربردهاي كوره اي . در مورد فولادهاي توربين هاي گازي مشخصات ديگري نيز مطرح مي شود ، ظرفيت ميرايي داخلي و استحكام خستگي ، حساسيت به فاق و استحكام ضربه اي ( سرد و گرم ) ، مشخصه جوشكاري و ماشينكاري ، بويژه در رتورهاي بزرگ كه بايد با حداقل مقاطع جوشكاري شده ساخته شوند .


ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

پوشش كردن خطوط لوله

پوشش خط لوله در معرض آيتم هاي بسياري در حين كار است . مانند رطوبت ، فشار، باكتريها و .... . البته عدم وجود نور خورشيد يك گزينه مثبت براي خط لوله محسوب مي شود؛ اعمال پوشش بر روي خطوط لوله هزينه بسياري را در بر ميگيرد . به همين دليل انتخاب پوشش و نحوه اعمال آن از اهميت بسياري برخوردار است . همچنين براي لوله هاي مدفون در خاك اين امكان وجود ندارد كه پوشش آنها همانند ديگر سازه ها در بازه زماني كوتاه تعويض شود و پوشش بايد بالغ بر 20 سال دوام داشته باشد . به همين منظور ويژگي هايي كه يك پوشش نيازمند است عبارت است از :
ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

آشنایی با دستگاه C-Scan

برای انتقال گاز و فرآورده های نفتی در مسیرهای طولانی از لوله های فولادی مدفون در خاك  استفاده می شود . این خطوط لوله از مناطق مختلفی همچون جنگل ها ، بیابان ها ، مزارع و ..... عبور می کنند و در شرایط مختلف محیطی قرار میگیرند . لذا هر گونه تخریب و نقص در این لوله ها علاوه بر خسارات مادی و هدر رفتن منابع ، موجب خسارات زیست محیطی نیز میشود. مهمترین عامل طبیعی که موجب تخریب خارجی لوله های فولادی میشود عامل خوردگی است . برای جلوگیری از خوردگی این گونه لوله ها آنها را به وسیله نوارهای پلیمری پوشش داده و با اعمال جریان مستقیم آنها را تحت حفاظت کاتدی قرار میدهند. لازم به ذكر است كه محافظت اصلی به بوسیله پوشش پلیمری انجام می شود و حفاظت كاتدی به عنوان  مكمل به كار می رود. از همین رو هرگونه تخریب در پوشش خطوط لوله به معنی باز شدن راه برای حمله خوردگی است . پس باید صحت و سلامت پوشش به طور دوره ای کنترل شود . از آنجایی که خطوط لوله در اکثر قسمت ها در زیر خاک مدفون هستند استفاده از روش های متداول کنترل پوشش غیر ممکن است .


ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

حفاظت كاتدي خطوط لوله - 2

اندازه گيري مقاومت زمين :

خاک هايي که داراي ضريب مقاومت الکتريکي بالايي هستند از شدت جريان خوردگي پاييني برخوردار هستند . و اما نقاطي که داراي پتانسيل بالايي هستند داراي مقاومت الکتريکي پاييني هستند . چرا که در آنها شدت جريان خوردگي بالاست . بررسي ضريب مقاومت الکتريکي خاک مي تواند راهنماي خوبي جهت تعيين مکان کار گذاردن بستر آندي و عمق آند از سطح زمين باشد . جهت اندازه گيري مقاومت خاک از روش چهار ميله ونر استفاده مي شود ، شکل 9 نشان مي دهد که 4 ميله به صورت عمودي در خاک قرار مي گيرند . دو ميله 1و2 با استفاده از يک منبع تغذيه ، جرياني را به درون خاک مي فرستند و دو ميله ديگر 3و 4 ولتاژ اندازه گيري مي کنند


ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

حفاظت كاتدي خطوط لوله1

اصول خوردگي براساس خواص فعل و انفعالات الكتروشيميايي است كه در آند توليد الكترون و در كاتد مصرف الكترون صورت مي پذيرد . واكنش هاي الكترو شيميايي انحلال فلز و آزاد شدن گاز هيدروژن ، بر طبق معادلات زير است :

M → Mn+ + ne

2H + +2e → H2

در پروسه خوردگي لوله مدفون درخاك ، نقاط آندي و كاتدي در هر حال موجود هستند و با انتقال جريان الكتريسيته از نواحي آندي از فلز به محيط اطراف خوردگي رخ مي دهد و در نقاط كاتدي كه جريان از محل اطراف به فلز مي رسد خوردگي صورت نمي گيرد . به همين دليل فلز را مي توان به طور جزئي بوسيله استفاده از پوشش ها حفاظت نمود. اگر پوشش ها دائمي بودند و هنگام نصب و يا كار آسيب نمي ديدند لوله هاي فلزي هرگز خورده نمي شدند . پيدايش عيوب در لايه هاي محافظ يا وجود سوراخ ها، حتي اگر اتفاقي باشد ما را ملزم مي كند كه حفاظت نوع دومي را هم براي فلزات مدفون در خاك بكار بريم . روش عمومي استفاده از حفاظت كاتدي است.

در اين روش با وارد شدن يك پتانسيل كاتدي ، قطعه مهندسي به يك كاتد ( قطب منفي) تبديل مي گردد؛ در حقيقت جريان از طرف محيط به تمام سطح لوله مي رسد پس در حقيقت ديگر خوردگي نخواهيم داشت و لوله محافظت مي گردد.

حفاظت كاتدي را ميتوان به تنهايي هم بكار برد ولي به مقدار جريان زيادي نياز است. بنابراين بهترين روش آن است كه از يك لايه محافظ مناسب استفاده كرد و بعدا بوسيله حفاظت كاتدي آنرا تقويت نمود.


ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

فرآيند جوش نقطه‌اي(2) RESISTANCE SPOT WELDING

الكترودها در جوشكاري مقاومتي نقطه اي:  

الكترود در فرآيندهاي مختلف مقاومتي مي تواند به اشكال گوناگوني باشد كه داراي چندين نقش است از جمله هدايت جريان الكتريكي به موضع اتصال، نگهداري ورق ها بر روي هم و ايجاد فشار لازم در موضع مورد نظر و تمركز سريع حرارت در موضع اتصال. الكترود بايد داراي قابليت هدايت الكتريكي و حرارتي بالا و مقاومت اتصالي يا تماسي (contact resistance) كم و استحكام و سختي خوب باشد، علاوه بر آن اين خواص را تحت فشار و درجه حرارت نسبتاً بالا ضمن كار نيز حفظ كند. از اين جهت الكترودها را از مواد و آلياژهاي مخصوص تهيه مي كنند كه تحت مشخصه يا كد RWMA به دو گروه A آلياژهاي مس و B فلزات ديرگداز تقسيم بندي مي شوند، در جداول صفحه بعد مشخصات اين دو گروه درج شده است. مهمترين آلياژهاي الكترود مس ـ كروم، مس ـ كادميم و يا برليم ـ كبالت ـ مس مي باشد. اين آلياژها داراي سختي بالا و نقطه آنيل شدن بالايي هستند تا در درجه حرارت بالا پس از مدتي نرم نشوند، چون تغير فرم آنها سبب تغيير سطح مشترك الكترود با كار مي شود كه ايجاد اشكالاتي مي كند. قسمت هايي كه قرار است به يكديگر متصل شوند . بايد كاملاً بر روي يكديگر قرار داشته و در تماس با الكترود باشند تا مقاومت الكتريكي تماسي R2, R1 كاهش يابد. مقاومت الكتريكي بالا بين نوك الكترود و سطح كار سبب بالا رفتن درجه حرارت در محل تماس مي شود كه اولاً مرغوبيت جوش را كاهش مي دهد ثانياً مقداري از انرژي تلف مي شود. روش هاي مختلفي براي اعمال فشار پيش بيني شده است كه دو سيستم آن معمول تر است:


ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

فرآيند جوش نقطه‌اي(1) RESISTANCE SPOT WELDING:

جوش نقطه‌اي يكي از پركاربردترين نوع جوش مقاومتي مي‌باشد. اين فرآيند براي اتصال ورق‌هاي لب روي هم، يا سيم به ورق و يا سيم بر روي سيم بكار برده مي شود و در آن قطعه كار بين الكترودها تحت فشار قرار گرفته و جريان توسط تراسفورماتور و بازوها از الكترودها و سپس قطعه كار عبور مي كند، اين فرآيند كاربرد زيادي در صنايع لوازم خانگي و اتومبيل سازي دارد. در اين جوش اتصال دو سطح توسط حرارت و فشار تواماً انجام مي گيرد كه وقتي جريان الكتريكي از ميان دو قطعه فلزي كه بهم چسبيده اند عبورمي كند، مقاومت زياد موضعي موجب توليد گرماي فوق العاده زيادي مي شود. در صورتي كه جريان كافي بكار رود، فلزات مورد استفاده ابتدا در حالت خميري قرار گرفته و سپس ذوب مي شوند. اگر هنگامي كه دو فلز در حالت خميري يا مذاب قرار دارند به يكديگر فشار داده شوند و تا كمي بعد از قطع جريان و خنك شدن در همان وضعيت باقي بمانند، دو قطعه در هم آميخته شده و به صورت يك قطعه واحد در مي آيند، كه در اين حالت جوش بصورت دكمه يا ديسك هايي بين دو لايه ورق بوجود مي آيد كه با توجه به سرعت انجام اين عمل، بسياري از خواص فيزيكي آنها دست نخورده باقي خواهند ماند.
ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

خوردگي موضعي قليايي آلياژ آلومينيوم 5083 در محلول سديم کلرايد 5/3 درصد

چکيده

در اين مقاله فرآيند خوردگي آلياژ 5083AA در يک محلول هوا دار 5/3 درصد سديم کلرايد بررسي  شده است. نتايج به دست آمده نشان مي دهد که عامل اصلي تغيير آلياژ در تماس با محلول،  به خوردگي موضعي اطراف رسوب هاي کاتدي موجود در آلياژ ارتباط دارد که در حقيقت اين موضوع  پيامدي از قليايي شدن محيط در اطراف اين رسوب ها مي باشد. حفرات تشکيل شده در اين حالت از لحاظ مور فولوژي نيمه کروي مي باشند که  از حفرات کريستالوگرافيک متمايز  هستند. در اين آلياژ  تحت شرايط ذکر شده حتي  براي نمونه هايي که براي مدت زمان طولاني تحت آزمايش قرار گرفته اند حفرات کريستالوگرافيک مشاهده نشده است. براي شکل گيري حفرات کريستالوگرافيک لازم است که آلياژدر حد پتانسيل جوانه زدن حفره پلاريزه شده و علاوه بر آن دانسيته جريان از ميزان بحراني بيشتر باشد. فقط در حالتي که لايه اکسيدي روي آلياژ از بين        مي رود، حفرات کريستالوگرافيک در تماس با محلول هوا دار سديم کلرايد 5/3% شکل مي گيرند.

 

 

مقدمه

خوردگي حفره اي آلياژهاي آلومينيوم فرآيند پيچيده اي مي باشد که توسط فاکتور هاي محيطي مختلفي از قبيل pH ، دما، نوع آنيون موجود در محلول يا خواص فيزيکي- شيميايي لايه پسيو تحت تأثير قرارمي گيرد[1]. جذب يون هاي مهاجم از قبيل يون کلر  به درون عيوب موجود در لايه محافظ و نفوذ در اين لايه و انباشتگي اين يون ها در عيوب، از عوامل  مهم و اصلي جوانه زني حفرات مي با شند [2-4] محققين ديگري پيشنهاد  نموده اند، حفرات ايجاد شده مي توانند ناشي از فرآيند هيدروليز باشندکه باعث افزايش ميزان pH به صورت موضعي شده و در  نهايت مانع از پسيو شدن  مجدد سطح فلز مي گردد[5] . عوامل ديگري در رابطه با حساسيت  آلومينيوم به خوردگي حفره اي و ديگر انواع خوردگي موضعي وجود دارند که در حقيقت به طبيعت      الکتروشيميايي فازهاي بين فلزي  موجود در آنها مربوط مي باشند[6-8]. با توجه به اين موضوع  رفتار مشاهده شده در مورد خوردگي آلومينيوم به اختلاف پتانسيل فاز زمينه وذرات بين فلزي موجود در آلياژ مربوط است [9-13] . در مرجع[8] بيان شده است حضور آخال هاي فلزي اي که نسبت به فاز زمينه نجيب تر مي باشند سبب  کاهش مقاومت آلياژ به خوردگي شده اند. اين آخال ها به واسطه فعاليت و خاصيت کاتدي که از خود نشان مي دهند باعث تحريک و انجام واکنش هاي آندي شده و موجب  خوردگي فاز زمينه مي شوند [14-15] . اولين تحقيق  صورت گرفته بر روي اين مطلب، مطالعه تأثير حضور آخال هاي Al 3 Fe بر روي رفتار خوردگي     آلياژ ها بوده است [16-17] طبق مطالعات انجام شده، حضور رسوب هاي Al 3 Fe  موجب افزايش حساسيت آلياژ به خوردگي حفره اي شده است. افزايش موضعي pH به سبب  واکنش احياء اکسيژن مي باشد که باعث  تشکيل حفرات در اطراف ذرات بين فلزي مي گردد. در مرجع [18] تحقيقات صورت گرفته به منظور تعيين  ميزان  pH در اطراف آخال هاي Al 3 Fe  متمرکز شده است.

خوردگي ايجاد شده در اطراف کا تد هاي بين  فلزي باعث تشکيل حفرات قليايي مي شود که در مرجع [15] به آنها اشاره شده است. اين نوع از حفره دار شدن در زير پتانسيل هاي جوانه زني و پسيو شدن مجدد  رخ   مي دهد. از اطلاعات موجود در مقالات مختلف مي توان در يافت که رابطه واضح و مشخص بين اين نوع از هجوم وحفره دار شدني که به حفره دار شدن کريستالوگرافيک موسوم است وجود ندارد. در حقيقت حفرات کريستالوگرافيک زماني شکل مي گيرند که آلياژ به پتانسيل جوانه زني  حفره برسد. در مقاله حاضر فرآيند خوردگي  آلياژ AA5083 در محلول هوا دار سديم کلرايد 5/3%  مورد بحث قرار گرفته است. تحقيقات در جهت مطالعه ويژگي ها، شرايط تشکيل حفره ها و مورفولوژي خوردگي که در پتانسيل مدار باز (OCP) رخ داده، متمرکز شده است.


ادامه مطلب
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

بازرسی جوش

مقدمه:

در بسیاری از برنامه های تدوین شده توسط سازنده جهت کنترل کیفیت محصولات،از آزمون چشمی به عنوان اولین تست و یا در بعضی موارد به عنوان تنها متد ارزیابی بازرسی ،استفاده می شود.اگر آزمون چشمی بطور مناسب اعمال شود،ابزار ارزشمندی می تواند واقع گردد.

بعلاوه یافتن محل عیوب سطحی، بازرسی چشمی می تواند بعنوان تکنیک فوق العاده کنترل پروسه برای کمک در شناسایی مسائل و مشکلات مابعد ساخت بکار گرفته شود.

آزمون چشمی روشی برای شناسایی نواقص و معایب سطحی می باشد.نتیجتا هر برنامه کنترل کیفیت که شامل بازرسی چشمی می باشد،باید محتوی یک سری آزمایشات متوالی انجام شده در طول تمام مراحل کاری در ساخت باشد.بدین گونه بازرسی چشمی سطوح معیوب که در مراحل ساخت اتفاق می افتد،میسر میشود.

کشف و تعمیر این عیوب در زمان فوق،کاهش هزینه قابل توجهی را در بر خواهد داشت.بطوری که نشان داده شده است بسیاری از عیوبی که بعدها با روشهای تست پیشرفته تری کشف می شوند،با برنامه بازرسی چشمی قبل،حین و بعد از جوشکاری به راحتی قابل کشف می باشند.سازندگان فایده یک سیستم کیفیتی که بازرسی چشمی منظمی داشته است را بخوبی درک کرده اند.

میزان تاثیر بازرسی چشمی هنگامی بهتر می شود که یک سیستمی که تمام مراحل پروسه جوشکاری(قبل،حین و بعد از جوشکاری) را بپوشاند،نهادینه شود.

 

قبل از جوشکاری:

 

 قبل از جوشکاری ،یک سری موارد نیاز به توجه بازرس چشمی دارد که شامل زیر است:

 

  1. مرور طراحی ها و مشخصات Wps   
  2. چک کردن تاییدیه پروسیجرها و پرسنل مورد استفاده  PQR     
  3. بنانهادن نقاط تست
  4. نصب نقشه ای برای ثبت نتایج
  5. مرور مواد مورد استفاده
  6. چک کردن ناپیوستگی های فلز پایه
  7. چک کردن فیت آپ و تراز بندی اتصالات جوش
  8. چک کردن پیش گرمایی در صورت نیاز

 

اگر بازرس توجه بسیار دقیقی به این آیتم های مقدماتی بکند،می تواند از بسیاری مسائل که بعدها ممکن است اتفاق بیافتد،جلوگیری نماید.مساله بسیار مهم این است که بازرس باید بداند چه چیزهایی کاملا مورد نیاز می باشد.این اطلاعات را می توان از مرور مستندات مربوطه بدست آورد.با مرور این اطلاعات،سیستمی باید بنا نهاده شود که تضمین کند رکوردهای کامل و دقیقی را می توان بطور عملی ایجاد کرد.

 

 

نقاط نگهداری:

 

باید بنا نهادن نقاط تست یا نقاط نگهداری جایی که آزمون باید قبل از تکمیل هر گونه مراحل بعدی ساخت انجام شود، در نظر گرفته شود. این موضوع در پروژه های بزرگ ساخت یا تولیدات جوشکاری انبوه،بیشترین اهمیت را دارد.

 

 

روشهای جوشکاری:

 

 مرحله دیگر مقدماتی این است که اطمینان حاصل کنیم آیا روشهای قابل اعمال جوشکاری ،ملزومات کار را برآورده می سازند یا نه؟مستندات مربوط به تایید یا صلاحیت های جوشکاران هر کدام بطور جداگانه باید مرور شود.طراحی ها و مشخصات معین می کند که چه فلزهای پایه ای باید به یکدیگر متصل شوند و چه فلز پرکننده باید مورد استفاده قرار گیرد.برای جوشکاری سازه و دیگر کاربردهای بحرانی،جوشکاری بطور معمول بر طبق روشهای تایید شده ای که متغیرهای اساسی پروسه را ثبت می کنند و بوسیله جوشکارانی که برای پروسه ،ماده و موقعیتی که قرار است جوشکاری شود،تایید شده اند،انجام می گیرد.در بعضی موارد مراحل اضافی برای آماده سازی مواد مورد نیاز می باشد.بطور مثال در جاهایی که الکترودهای از نوع کم-هیدروژن مورد نیاز باشد،وسایل ذخیره آن باید بوسیله سازنده در نظر گرفته شود.

 

 

 موادپایه:

 

قبل از جوشکاری ، شناسایی نوع ماده و یک تست کامل از فلزات پایه ای مربوطه باید انجام گیرد.اگر یک ناپیوستگی همچون جدالایگی صفحه ای وجود داشته باشد و کشف نشده باقی بماند روی صحت ساختاری کل جوش احتمال تاثیر دارد.در بسیاری از اوقات جدالایگی در طول لبه ورقه قابل رویت می باشد بخصوص در لبه هایی که با گاز اکسیژن برش داده شده است.

 

 مونتاژ اتصالات:

 برای یک جوش،بحرانی ترین قسمت ماده پایه،ناحیه ای است که برای پذیرش فلز جوشکاری به شکل اتصال،آماده سازی می شود.اهمیت مونتاژ اتصالات قبل از جوشکاری را نمی توان به اندازه کافی تاکید کرد.بنابراین آزمون چشمی مونتاژ اتصالات از تقدم بالایی برخوردار است. مواردی که قبل از جوشکاری باید در نظر گرفته شود شامل زیر است:

  1. زاویة شیار (Groove angle) 
  2. دهانه ریشه (Root opening)
  3. ترازبندی اتصال (Joint alignment)
  4. پشت بند (Backing)
  5. الکترودهای مصرفی (Consumable insert)
  6. تمیز بودن اتصال (Joint cleanliness)
  7. خال جوش ها (Tack welds)
  8. پیش گرم کردن (Preheat)

هر کدام از این فاکتورها رفتار مستقیم روی کیفیت جوش بوجود آمده،دارند.اگر مونتاژ ضعیف باشد،کیفیت جوش احتمالا زیر حد استاندارد خواهد بود.دقت زیاد در طول اسمبل کردن یا سوار کردن اتصال می تواند تاثیر زیادی در بهبود جوشکاری داشته باشد.اغلب آزمایش اتصال قبل از جوشکاری عیوبی را که در  استاندارد محدود شده اند را آشکار می سازد،البته این اشکالات ،محلهایی می باشند که در طول مراحل بعدی بدقت می توان آنها را بررسی کرد.برای مثال،اگر اتصالی از نوع T (T-joint) برای جوشهای گوشه ای(Fillet welds)، شکاف وسیعی از ریشه نشان دهد،اندازه جوش گوشه ای مورد نیاز باید به نسبت مقدار شکاف ریشه افزوده شود. بنابراین اگر بازرس بداند چنین وضعیتی وجود دارد،مطابق به آن ،نقشه یا اتصال جوش باید علامت گذاری شود، و آخرین تعیین اندازه جوش به درستی شرح داده شود.

 

حین جوشکاری:

در حین جوشکاری، چندین آیتم وجود دارد که نیاز به کنترل دارد تا نتیجتا جوش رضایتبخشی حاصل شود.آزمون چشمی اولین متد برای کنترل این جنبه از ساخت می باشد.این می تواند ابزار ارزشمندی در کنترل پروسه باشد.بعضی از این جنبه های ساخت که باید کنترل شوند شامل موارد زیر می باشد:

 

(1)    کیفیت پاس ریشه جوش()                                                       weld root bead

 

(2)    آماده سازی ریشه اتصال قبل از جوشکاری طرف دوم

 

(3)    پیش گرمی و دماهای میان پاسی

 

(4)    توالی پاسهای جوش

 

(5)    لایه های بعدی جهت کیفیت جوش معلوم

 

(6)    تمیز نمودن بین پاسها

 

(7)    پیروی از پروسیجر کاری همچون ولتاژ،آمپر،ورود حرارت،سرعت.

 

 

 

هر کدام از این فاکتورها اگر نادیده گرفته شود سبب بوجود آمدن ناپیوستگی هایی می شود که می تواند کاهش جدی کیفیت را در بر داشته باشد.

 

 

 پاس ریشه جوش: 

 

 شاید بتوان گفت بحرانی ترین قسمت هر جوشی پاس ریشه جوش می باشد.مشکلاتی که در این نقطه وجود دارد...

 

در نتیجه بسیاری از عیوب که بعدها در یک جوش کشف می شوند مربوط به پاس ریشه جوش می باشند.بازرسی چشمی خوب روی پاس ریشه جوش می تواند بسیار موثر باشد.وضعیت بحرانی دیگر ریشه اتصال در درزهای جوش دو طرفه هنگام اعمال جوش طرف دوم بوجود می آید. این مساله معمولا شامل جداسازی سربار() slag و دیگر بی نظمی ها توسط تراشه برداری(chipping)،رویه برداری حرارتی(thermal  gouging) یا سنگ زنی(grinding) می باشد.وقتی که عملیات جداسازی کاملا انجام گرفت آزمایش منطقه گودبرداری شده قبل از جوشکاری طرف دوم لازم است.این کار به خاطر این است که از جداشدن تمام ناپیوستگی ها اطمینان حاصل شود.اندازه یا شکل شیار برای دسترسی راحت تر به تمام سطوح امکان تغییر دارد.

 

 

 پیش گرمی و دماهای بین پاس:

 

پیش گرمی و دماهای بین پاس می توانند بحرانی باشند و اگر تخصیص یابند قابل اندازه گیری می باشند.محدودیت ها اغلب بعنوان می نیمم،ماکزیمم و یا هر دو بیان می شوند.همچنین برای مساعدت در کنترل مقدار گرما در منطقه جوش،توالی و جای تک تک پاسها اهمیت دارد .بازرس باید ازاندازه و محل هر تغییر شکل یا چروکیدگی(shrinkage) سبب شده بوسیله حرارت جوشکاری آگاه باشد. بسیاری از اوقات همزمان با پیشرفت گرمای جوشکاری اندازه گیری های تصحیحی گرفته می شود تا مسائل کمتری بوجود آید.

 

 

 آزمایش بین لایه ای:

 

 برای ارزیابی کیفیت جوش هنگام پیشروی عملیات جوشکاری،بهتر است که هر لایه بصورت چشمی آزمایش شود تا از صحت آن اطمینان حاصل شود.همچنین با این کار می توان دریافت که آیا بین پاسها بخوبی تمیز شده اند یا نه؟ با این عمل می توان امکان روی دادن ناخالصی سرباره در جوش پایانی را کاهش داد.بسیاری از این گونه موارد احتمالا در دستورالعمل جوشکاری اعمالی،آورده شده اند.

در این گونه موارد،بازرسی چشمی که در طول جوشکاری انجام می گیرد اساسا برای کنترل این است که ملزومات روش جوشکاری رعایت شده باشد.

 

 

 بعد از جوشکاری:

 

 بسیاری از افراد فکر می کنند که بازرسی چشمی درست بعد از تکمیل جوشکاری شروع می شود.به هر حال اگر همه مراحلی که قبلا شرح داده شد،قبل و حین جوشکاری رعایت شده باشد،آخرین مرحله بازرسی چشمی به راحتی تکمیل خواهد شد.از طریق این مرحله از بازرسی نسبت به مراحلی که قبلا طی شده و نتیجتا جوش رضایت بخشی را بوجود آورده اطمینان حاصل خواهد شد. بعضی از مواردی که نیاز به توجه خاصی بعد از تکمیل جوشکاری دارند عبارتند از:

 

(1) ظاهر جوش بوجود آمده

 

(2) اندازه جوش بوجود آمده

 

(3) طول جوش

 

(4) صحت ابعادی

 

(5) میزان تغییر شکل

 

(6) عملیات حرارتی بعد از جوشکاری

 

هدف اساسی از بازرسی جوش بوجود آمده در آخرین مرحله این است که از کیفیت جوش اطمینان حاصل شود. بنابراین آزمون چشمی چندین چیز مورد نیاز می باشد.بسیاری از کدها و استانداردها میزان ناپیوستگی هایی که قابل قبول هستند را شرح می دهد و بسیاری از این ناپیوستگی ها ممکن است در سطح جوش تکمیل شده بوجود آیند.

 

 

 ناپیوستگی ها:

 

بعضی از انواع ناپیوستگی هایی که در جوشها یافت می شوند عبارتند از:

 

۱- تخلخل

 

۲- ذوب ناقص

 

۳- نفوذ ناقص در درز

 

۴- بریدگی( سوختگی ) کناره جوش

 

۵- روی هم افتادگی

 

۶-ترکها

 

۷- ناخالصی های سرباره

 

۸- گرده جوش اضافی

  

در حالی که ملزومات کد امکان دارد مقادیر محدودی از بعضی از این ناپیوستگی ها را تایید نماید ولی عیوب ترک و ذوب ناقص هرگز پذیرفته نمی شود.

برای سازه هایی که تحت بار خستگی و یا سیکلی (cyclic) می باشند، خطر این ناپیوستگی های سطحی افزایش می یابد. در اینگونه شرایط،بازرسی چشمی سطوح ،پر اهمیت ترین بازرسی است که می توان انجام داد.

وجود سوختگی کناره (undercut)،رویهم افتادگی(overlap) و کنتور نامناسب سبب افزایش تنش می شود؛ بار خستگی می تواند سبب شکستهای ناگهانی شود که از این تغییر حالتهایی که بطور طبیعی روی می دهد، زیاد می شود.به همین خاطر است که بسیاری اوقات کنتور مناسب یک جوش می تواند بسیار با اهمیت تر از اندازه واقعی جوش باشد،زیرا جوشی که مقداری از اندازه واقعی کمتر باشد،بدون ناخالصی ها و نامنظمی های درشت،می تواند بسیار رضایت بخش تر از جوشی باشد که اندازه کافی ولی کنتور ضعیفی داشته باشد.

برای تعیین اینکه مطابق استاندارد بوده است ،بازرس باید کنترل کند که آیا همه جوشها طبق ملزومات طراحی از لحاظ اندازه و محل(موقعیت) صحیح می باشند یا نه؟اندازه جوش گوشه ای(Fillet) بوسیله یکی از چندین نوع سنجه های جوش برای تعیین بسیار دقیق و صحیح اندازه تعیین می شود.

در مورد جوشهای شیاری(Groove) باید از لحاظ گرده جوش مناسب دو طرف درز را اندازه گیری کرد.بعضی از شرایط ممکن است نیاز به ساخت سنجه های جوش خاص داشته باشند.

 

 

عملیات حرارتی بعد از جوشکاری:

 

به لحاظ اندازه،شکل، یا نوع فلز پایه ممکن است عملیات حرارتی بعد از جوش در روش جوشکاری اعمال شود.این کار فقط از طریق اعمال حرارت(گرما) در محدوده دمایی بین پاس یا نزدیک به دمای آن ،صورت می گیرد تا از لحاظ متالورژیکی خواص جوش بوجود آمده را کنترل نمود. حرارت دادن در درجه حرارت دمای بین پاس،ساختار بلوری را به استثناء موارد خاص تحت تاثیر قرار نمی دهد.بعضی از حالات ممکن است نیاز به عملیات تنش زدایی حرارتی داشته باشند.بطوری که قطعات جوش خورده بتدریج در یک سرعت مشخص تا محدوده تنش زدایی تقریبا °F1100 تا F °1200 (590 تا 650 درجه سانتی گراد) برای اکثر فولادهای کربنی گرما داده می شود.

بعد از نگهداری در این دما به مدت یک ساعت برای هر اینچ از ضخامت فلز پایه،قطعات جوش خورده تا دمای حدود °F600 (315 درجه سانتی گراد) در یک سرعت کنترل شده سرد می شود. بازرس در تمام این مدت مسئولیت نظارت بر انجام کار را دارد تا از صحت کار انجام شده و تطابق با ملزومات روش کار اطمینان حاصل نماید.

 

 

آزمایش ابعاد پایانی:

 

اندازه گیری دیگری که کیفیت یک قطعه جوشکاری شده را تحت تاثیر قرار می دهد صحت ابعادی آن می باشد. اگر یک قسمت جوشکاری شده بخوبی جفت و جور نشود،ممکن است غیر قابل استفاده شود اگرچه جوش دارای کیفیت کافی باشد.

حرارت جوشکاری ، فلز پایه را تغییر شکل داده و می تواند ابعاد کلی اجزاء را تغییر دهد.بنابراین، آزمایش ابعادی بعد از جوشکاری ممکن است برای تعیین متناسب بودن قطعات جوشکاری شده برای استفاده موردنظر مورد نیاز واقع شود.

+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

تیتانیوم فلزی ارزشمند

بسیاری از مهندسین و طراحان هنوز تیتانیوم را فلزی گران و ناشناخته قلمداد می کنند؛ اما پیشرفت های اخیری که در زمینه تولید این فلز صورت گرفته است، نشان می دهد که تیتانیوم ماده ای بسیار فوق العاده برای استفاده های مهندسی است و از بسیاری از مواد مشابه مورد استفاده در این صنعت ارزان تر است.
یکی از ویژگی های مهم تیتانیوم چگالی پایین آن (۵۵/۴ گرم بر سانتی متر مکعب) است. این ویژگی، همراه با استحکام و مقاومت بالا در برابر خراشیدگی، تیتانیوم را به فلزی بسیار ایده آل تبدیل کرده است. تیتانیوم عمدتاً در صنایع هوا – فضا و همینطور در کارخانه ها و تجهیزات صنایع شیمیایی مورد استفاده قرار می گیرد. این فلز همچنین در ساخت عینک ها، مهندسی های ظریف، اندازه گیری، مهندسی کنترل و فن آوری پزشکی مخصوصاً مواردی که حد تحمل بیولوژیک از اهمیت زیادی برخوردار است، مورد استفاده قرار می گیرد.


مهم ترین مورد مصرف فلز تیتانیوم که در تلاقی با زندگی روزمره ما قرار می گیرد، بیشتر در اشیای قیمتی نظیر ساعت های مچی، عینک ها و جواهرات است. این کاربرد ها به این تصور هرچه بیشتر دامن زده اند که تیتانیوم فلزی گران است.
از طرف دیگر انتخاب فلز مورد استفاده در طراحی های مختلف از اولین مراحل ساخت اشیا به شمار می رود و در این مرحله بسیاری از فلزاتی که به نظر می آید باید گران قیمت باشند، بدون انجام تحلیل اقتصادی از میان گزینه های احتمالی حذف می گردند. در نگاه اولیه به درستی تیتانیوم در صدر لیست فلزات گران قیمت و دارای استفاده های خاص قرار دارد. اما این مسئله اشتباهی است که بسیاری از طراحان در همان مرحله اول طراحی مرتکب می شوند. آن ها در محاسبات مقدماتی، وزن فولاد مورد استفاده در طراحی خود را با وزن تیتانیوم مورد نیاز، بدون آن که به حجم آن توجه داشته باشند جایگزین می کنند و مسلم است که یک کیلوگرم تیتانیوم بسیار گران تر از یک کیلوگرم فولاد است. در حالیکه این مقدار تیتانیوم، چندین برابر همان مقدار فولاد کاربری دارد.
عده بسیار کمی از مردم به مقایسه وزن دو قطعه مشابه که یکی از فولاد و دیگری از تیتانیوم ساخته شده است توجه دارند. هنگامی که از لحاظ هندسی، این دو قطعه دارای حجم مشابه باشند، نسبت بهای قطعه تیتانیومی به بهای قطعه فولادی با آلیاژ درجه بالا به عدد ۵/۲ تا ۳ می رسد.
مواد تیتانیومی از قدرت تحمل بسیار بالایی برخوردارند و همچنین نقطه تسلیم آن ها در برابر نیروی کششی وارد شده بسیار بالا است. مقاومت بیشینه آلیاژ تیتانیوم ۳۳ که در آن از فلزات آلومینیوم، انادیوم و قلع استفاده شده، در برابر نیروی کششی، معادل یک هزار و ۲۰۰ نیوتون بر متر مربع است و این در حالیست که تیتانیوم خالص هم می تواند فشار ناشی از نیروی کششی را تا حد ۷۴۰ نیوتن بر متر مربع تحمل کند؛ با این وجود همچنان می توان این فلز را سخت تصور کرد. (با توجه به این که حد شکست در برابر کشیدگی آن حداقل ۸ درصد است)
در حال حاضر تعداد طراحانی که در زمینه ساخت اشیاء متحرک به استفاده از این فلز علاقه نشان داده اند رو به فزونی گذاشته است. یکی از کاربردهای جدید تیتانیوم، استفاده از آن در توربین های بخار است. تیتانیوم مهندسان را قادر می سازد تا طول پره های توربین را زیاد کرده و بدین ترتیب نسبت نیروی تولید شده را افزایش دهند.
از دیگر کاربردهای رو به افزایش تیتانیوم، استفاده از آن در موقعیت هایی است که نیاز به مقاومت بالا در برابر برش احساس شده و یا ترکیبی از دو نیروی برشی و کششی دیده می شود. در این حالت خاص از نوع ویژه ای از تیتانیوم استفاده می شود که بر روی آن پوششی از نیترید قرار دارد. این پوشش از حرارت دادن فلز در فضای نیتروژنی بدست می آید.
همینطور در صنایع خودرو سازی، کاربردهای جدید و جالبی برای تیتانیوم پیدا شده است. به عنوان مثال جایگزین کردن تیتانیوم با فولاد، در موتور مولد قطار، باعث کاهش ۶۰ درصدی وزن این وسیله شده است. از دیگر کاربردهای تیتانیوم در این صنعت، استفاده در میل لنگ، مفتول های اتصالی و سیستم اگزوز خودرو است. مهم ترین حوزه های رشد استفاده از تیتانیوم در حال حاضر صنایع هوا – فضا، نیروگاه ها و دستگاه های شیرین کننده آب هستند.
یکی دیگر از خواص مهم تیتانیوم، قابلیت قرارگیری آن به عنوان فلز واسط میان دو فلز دیگر است. به عنوان مثال از تیتانیوم در صفحات انتقال دهنده گرما در کارخانه های شیمیایی یا شیرین کننده آب استفاده می شود.
یکی از دلایل مقاومت بالای تیتانیوم در برابر خراشیدگی و عدم انفعال این عنصر در برابر دیگر مواد شیمیایی، پوسته ای است که بر روی فلز تشکیل می شود. هنگامی که تیتانیوم با اکسیژن تماس پیدا می کند، سطح آن به سرعت واکنش نشان داده و اکسیده می شود. در اثر این فعل و انفعال شیمیایی، پوسته ای بسیار مقاوم تشکیل می شود که جلوی هرگونه فعل و انفعال دیگری را می گیرد. اگر به این پوسته آسیبی برسد، در صورت حضور اکسیژن و یا حتی آب، تیتانیوم مجدداً اکسیده شده و در محل خراش، پوسته جدیدی تشکیل می شود. این مکانیزم بسیار به آلومینیوم شباهت دارد. با این تفاوت که پوسته تشکیل شده بر روی تیتانیوم، ضخیم تر و پایدار تر از پوسته آلومینیوم است. این لایه محافظ علاوه بر ایجاد مقاومت در برابر خراشیدگی، حد تحمل بیولوژیک فلز را افزایش می دهد. با این وجود بعضی از ترکیبات شیمیایی نظیر فلئورین می توانند این پوسته محافظ را تخریب کنند.
با توجه به کاربردهای فراوان تیتانیوم، این فلز در گروه فولادهای آلیاژی و یا آلیاژهای نیکل قرار می گیرد، اما به خاطر سختی و قدرت تحمل آن در برابر کشش و برش، نیروی بیشتری برای شکست این فلز نسبت به فلزات آهنی لازم است. یکی از دلایل این که هزینه تولید تیتانیوم بسیار بالا است، استفاده از فن آوری موجود جهت تولید محصولات با کیفیت بسیار بالاست که بتواند نیازهای صنایع حساسی مانند هوا – فضا را پاسخگو باشد. مقید بودن به تولید محصولات با کیفیت بسیار بالا، مسلماً موجب ایجاد هزینه های اضافی می گردد، اما اگر حوزه های جدیدی برای مصرف این فلز که نیاز به کیفیت بسیار بالا هم نداشته باشد، ایجاد گردد؛ این امکان وجود دارد که فن آوری های جایگزینی برای تولید ساخته شوند تا هزینه ها را کاهش دهند. صنایع ساختمانی و خودرو سازی، از جمله صنایعی هستند که اگر به صورت عمده وارد بازار مصرف شوند، به ساخت فن آوری ارزان قیمت تر کمک خواهند کرد.
تا زمانی که تیتانیوم به عنوان فلزی گران قیمت تلقی می شود، این چرخه ادامه دارد و آثار آن مثل تقاضای محدود و مصرف پایین باعث می شود تا تولیدکنندگان هیچ علاقه ای به توسعه فن آوری های ارزان تر و ساده تر نداشته باشند.
یکی از شرکت هایی که در زمینه تولید تیتانیوم فعال بوده و پیشرفت های مهمی هم داشته است، شرکت دویچه تیتان (Deutsche Titan) از زیر مجموعه های گروه تیسن کراپ (Thyssen Krupp) در آلمان است. این شرکت به همراه شرکت ایتالیایی تیتانیا، گروه تیتانیوم را تشکیل داده اند.
دویچه تیتان، تیتانیوم اسفنجی مورد نیاز خود را از کشورهای روسیه، قزاقستان، اوکراین، ژاپن و چین خریداری می کند و سالانه ظرفیت تولید ۴ هزار تن شمش را دارا می باشد. این شمش ها می توانند تا ۱۳ تن وزن داشته باشند. دویچه تیتان طیفی از محصولات نیمه تمام را با استفاده از تأسیسات خود شرکت، گروه تیسن کراپ و همینطور کوره های ذوب دیگر تولید می کند. محصولات این شرکت در غالب شمش، اسلب، ورق، کلاف، صفحه، لوله جوش کاری شده و مفتول عرضه می شوند.
+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

جوشكاري ترميت

جوشكاري ترميت به مجموعه فرآيندهايي گفته مي شود كه در آن جوش ازفلز مذابي كه توسط يك كنش شيميايي بشدت گرمازا بوجود آمده است ، تشكيل مي شود. اين نوع جوشكاري بيشتر شبيه به ريخته گري بوده و دور دو قطعه اي كه بايد به هم جوش داده شوند يك قالب قرار دارد كه فلز مذاب ناشي از اين واكنش شيميايي به اين قالب هدايت شده و  پس از سرد شدن فلز مذاب داخل قالب جوش شكل مي گيرد .
واكنش شيميايي يا ترميت معمولا بين اكسيد يك فلز  ( معمولا آهن يا مس )  و فلز احيا كننده مانند آلومينيوم انجام مي شود . براي انجام واكنش از يك پودر كه به سرعت محترق شده به عنوان چاشني استفاده مي شود كه گرماي لازم براي شروع واكنش را فراهم مي آورد . دو نمونه از واكنش هاي مورد استفاده در اين نوع جوشكاري :

 

Fe3O4 + 8 Al à 9 Fe + 4 Al2O3 (3088 ºC)۷۱۹KCal۳

3 CuO + 2 Al à 3 Cu + Al2O3 (4865 ºC ) ۲۷۵.۳ Kcal


انواع ترميت مورد استفاده در صنعت :

-  ترميت ساده :  شامل مخلوط  پودر هاي اكسيد آهن و آلومينيوم

- ترميت فولاد كم كربن : شامل ترميت ساده به اضافه پودر فولاد كم كربن يا حتي مقداري پودر منگنز

- ترميت چدن : شامل ترميت ساده به اضافه مقداري پودر فولاد سيليسيوم دار و فولاد كم كربن

- ترميت براي جوشكاري ريل ها : شامل تركيبات ترميت ساده به اضافه مقداري پودر كربن ، منگنز و عناصر آلياژي ديگر به منظور افزايش سختي فلز جوش در ريل

- ترميت براي اتصال كابل هاي برق : شامل پودر هاي اكسيد مس و آلومينيوم

جوشكاري ترميت معمولا به دو صورت در صنعت وجود دارد ؛ در نوع اول از فلز ذوب شده مستقيما براي اتصال دو قطعه استفاده مي شود . در نوع دوم از فلز ذوب شده به منظور گرم كردن و به درجه حرارت آهنگري رساندن قطعات استفاده مي شود و سپس با اعمال فشار به قطعات اتصال شكل خواهد گرفت .


مراحل جوشكاري ترميت :

1- تميز كردن سطح قطعات ار آلودگي و اكسيد

2- آماده كردن قالب ( قالب ها بصورت دستي ساخته شده يا بصورت آماده براي اشكال و قطعات خاص در بازار موجودند)

3- ايجاد فاصله مناسب بين قطعات و قرار دادن قالب دور قطعات

4- پيشگرم كردن قالب

5- ريختن مواد ترميت در محفظه احتراق

6- قرار دادن چاشني

7- روشن كرد چاشني به منظور احتراق ترميت

8- باز كردن قالب پس از سرد شدن مذاب حاصل ازواكنش

9- تميزكردن و پرداخت كردن سطح قطعات و اتصال

 

مزيت جوشكاري ترميت نياز نداشتن به سيستم هاي تامين انرژي ( ماند مولد برق و ... ) براي جوشكاري است و پودر و قالب ها را در هر مكاني ( براي مثال در طول ريل راه آهن براي تعميير ريل شكسته ) بكار برد . از محدوديت هاي اين روش ميتوان به ناتوان بودن در جوش دادن مقاطع نازك اشاره كرد زيرا انرژي جوش زياد بوده و فقط براي مقاطع كلفت مثل ريلها و ميل لنگ هاي شكسته و كابلهاي برق كاربرد دارد .

موارد استفاده از جوش ترميت:

- جوش و تعمير ريل هاي شكسته

- جوش لب به لب لوله هاي جدار ضخيم

- جوش و تعمير ميل لنگهاي شكسته

- جوش و تعمير شاسي ماشين ها

- جوش و اتصال قطعات ريخته گري شده كه بخاطرطول بلند و بزرگ بودن نميتوانند در يك مرحله قالبگيري و ريختگري شوند .

- براي جوش كابل هاي ضخيم برق به يكديگر يا يك هادي ديگر

- براي جوش و اتصال ميلگردهاي تقويت كننده بتن در سازه ها ساختماني به يكديگر

+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

ريخته گري دقيق

روش ريخته گري دقيق تعريف :

‌ريخته گري دقيق به روشي اطلاق ميشود كه در ان قالب با استفاده از پوشاندن مدل هاي از بين رونده توسط دوغاب سراميكي ايجاد مي وشد. مدل (‌كه معمولا از موم يا پلاستيك است ) توسط سوزاندن با ياذوب كردن از محفظه قالب خارج مي شود.

ويژگي :
در روشهاي قالبگيري در ماسه ، مدلهاي چوبي يا فلزي به منظور تعبيه شكل قطعه در داخل مواد قالب مورد استفاده قرار ميگيرد. در اينگونه روشا مدلها قابليت استفاده مجدا دارند ولي قالب فقط يكبار استفاده مي شود. در روش دقيق هم مدل و هم قالب فقط يك بار استفاده مي شود. درروش دقيق هم مدل و هم قالب فقط يك بار استفاده مي شود .

مزايا و محدوديتها
الف: مهمترين مزاياي روش ريخته گري دقيق عبارتند از : - توليد انبوه قطعات با اشكال پيچيده كه توسط روشهاي ديگر ريخته گري نمي توان توليد نمود توسط اين فرايند امكان پذير مي شود. - مواد قالب و نيز تكنيك بالاي اين فرايند،‌- امكان تكرار توليد قطعات با دقت ابعادي وصافي سطح يكنواخت را ميدهد. - اين روش براي توليد كليه فلزات و آلياژهاي ريختگي به كار مي رود . همچنين امكان توليد قطعاتي از چند آلياژ مختلف وجود دارد. - توسط اين فرآيند امكان توليد قطعاتي با حداقل نياز به عملايت ماشينكاري و تمام كاري وجود دارد. بنابراين محدوديت استفاده از آلياژهاي با قابليت ماشينكاري بد از بين مي رود. - در اين روش امكان توليد قطعات با خصوصا متالورژيكي بهتر وجود دارد. - قالبت تطابق براي ذوب و ريخته گري قطعات در خلاء وجود دارد. - خط جدايش قطعات حذف مي شود و نتيجتا موجب حذف عيوبي مي شود كه در اثر وجود خط جدايش به وجود مي آيد.. –
ب:مهمترين محدوديتهاي روش ريخته گري دقيق عبارتنداز : - اندازه و وزن قطعات توليد شده توسط اين روش محدود بوده و عموما قطعات با وزن كمتر از 5 كيلوگرم توليد مي شود . - هزينه تجهيزات و ابزارها در اين روش نسبت به ساير روشها بيشتر است.
انواع روشهاي ريخته گري دقيق:

در اين فرايند دو روش متمايز در تهيه قالب وجود دارد كه عبارتند از روش پوسته اي و روش توپر به طور كلي اين دو روش درتهيه مدل با هم اختلاف ندارند بلكه در نوع قالبها با هم تفاوت دارند. فرايند قالبهاي پوستهاي سراميكي پوسته اي سراميكي درريخته گري دقيق: براي توليد قعطات ريختگي فولادي ساده كربني ، فولادهاي آلياژي ،‌فولاد هاي زنگ نزن، مقاومت به حرارت وديگر آلياژهايي با نقطعه ذوب بالاي اين روش به كار مي رود به طور شماتيك روش تهيه قالب را در اين فرآيند نشان مي دهند كه به ترتيب عبارتند از :
الف : تهيه مدلها : مدلهاي مومي يا پلاستيكي توسط ورشهاي مخصوص تهيه ميشوند.
ب : مونتاژ مدلها : پس از تهيه مدلهاي مومي يا پلاستيك معمولا تعدادي از آنها ( اين تعداد بستگي به شكل و اندازه دارد) حول يك راهگاه به صورت خوشه اي مونتاژ مي شوند در ارتباط باچسباندن مدلها به راهگاه بار ريز روشهاي مختلف وجود دارند كه سه روش معمولتر است و عبارتند از :
روش اول: محل اتصال در موم مذاب فرو برده مي شود و سپس به محل تعيين شده چسبانده مي شود .
روش دوم: اين روش كه به جوشكاري مومي معروف است بدين ترتيب است كه محلهاي اتصال ذوب شده به هم متصل مي گردند .
روش سوم: روش سوم استفاده از چسبهاي مخصوص است كه محل اتصال توسط جسبهاي مخصوص موم يا پلاستيكي به هم چسبانده مي شود. روش اتصال مدلهاي پلاستيكي نيز شبيه به مدلهاي مومي مي باشد..
ج : مدل خوشه اي و ضمائم آن در داخل دو غاب سراميكي فرو برده مي شود. درنتيجه يك لايه دو غاب سراميكي روي مدل را مي پوشاند
د:در اين مرحله مدل خوشه اي در معرض جريان باران ذرات ماسه نسوز قرار ميگيرد.‌تايك لايه نازك درسطح آن تشكيل شود .
ه: پوسته سراميكي ايجاده شده در مرحله قبل كاملاخشك مي شوند تا سخت و محلم شوند. مراحل ( ج ) (د) ( ه) مجددا براي جند بار تكرار مي شود . تعداد دفعات اين تكرار بستگي به ضخامت پوسته قالب مورد نياز دارد. معمولا مراحل اوليه از دوغابهايي كه از پودرهاي نرم تهيه شده ،‌استفاده شده و بتدريج مي توان از دو غاب و نيز ذرات ماسه نسوز درشت تر استفاده نمود. صافي سطح قطعه ريختگي بستگي به ذرات دو غاب اوليه و نيز ماسه نسوز اوليه دارد.
ز: مدول مومي يا پلاستيكي توسط ذوب يا سوزانده از محفظه قالب خارج مي شوند، به اين عمليات موم زدايي مي گويند . درعمليات موزدايي بايستي توجه نمود كه انبساط موم سبب تنش وترك در قالب نشود
ح: در قالبهاي توليد شده عمليات بار ريزي مذاب انجام مي شود ط: پس از انجماد مذاب ،‌پوسته سراميكي شكسته ميشود.
ي: در آخرين مرحله قطعات از راهگاه جدا مي شوند.
مواد نسوز در فرآيند پوسته اي دقيق:
نوعي سيليس به دليل انبساطي حرارتي كم به طور گسترده به عنوان نسوز در روش پوسته اي دقيق مورد استفاده قرار مي گيرد.اين ماده نسوز براي ريخته گري آلياژهاي آهني و آلياژهاي كبالت مورد استفاده قرار مي گيرد. زير كنيم شايد بيشترين كاربرد را به عنوان نسوز در فرآيند پوسته اي دارد. اين ماده بهترين كيفيت را در سطوح قطعه ايجاد نموده و در درجه حرارتهاي بالا پايدار بوده و نسبت به خورديگ توسط مذاب مقاوم است. آلومين به دليل مقاومت كم در برابر شوك حرارتي كمتر مورد استفاده قرار ميگيرد. به هر حال در برخي موارد به دليل مقاومت در درجه حرارت بالا ( تا حدودc ْ1760 مورد استفاده قرار مي گيرد.
چسبها :‌مواد نسوز به وسيله چسبها به يكديگر مي چسبد اين چسبها معمولا شيميايي مي باشند سليكات اتيل ،‌سيليكات سديم و سيليس كلوئيدي . سيليكات اتيل باعث پيدايش سطح تمام شده بسيار خوب ميشوند. سيليس كلوئيدي نيز باعث بوجود آمدن سطح تمام شده عالي مي شود.
اجزاي ديگر: يك تركيب مناسب علاوه بر مواد فوق شامل مواد ديگري است كه هر كدام به منظور خاصي استفاده مي شود.
اين مواد به اين شرح است : - مواد كنترل كننده ويسكوزيته - مواد تركننده جهت كنترل سياليت دو غاب و قابليت مرطوب سازي مدل - مواد ضد كف جهت خارج كردن حبابهاي هوا - مواد ژلاتيني جهت كنترل در خشك شدن و تقليل تركها فرايند تهيه قالبهاي توپر در ريخته گري دقيق: شكل به طول شماتيك مراحل تهيه قالب به روش توپر را نشان مي دهد كه عبارتند از :
الف : تهيه مدلهاي ذوب شونده
ب :‌مونتاژ مدلها : اين عمليات درقسمت
ج: توضيح داده شده ح: مدلهاي خوشه اي و ضمائم آن درداخل درجه اي قرار ميگيرد و دوغاب سراميكي اطراف آن ريخته ميشودتا درجه با دو غاب ديرگداز پر شود. به اين دو غاب دو غاب پشت بند نيز گفته ميشود . اين دو غاب در هوا سخت مي شود و بدين ترتيب قالب به اصطلاح توپر تهيه مي شود
د: عمليات بار ريزي انجام ميشود
ه : قالب سراميكي پس ازانجماد مذاب شكسته مي شود
و: قطعات از راهگاه جدا مي شوند شكل دادن به روش ريخته گري دو غابي مقدمه اين طريقه شبيه كار فيلتر پرس است ، به اين معنا كه مقدار آب به مواد اوليه اضافه شده تا حالت دو غابي به خود بگيرد. بايد خارج شود ،به اين دليل براي ساختن اشيا روش كندي است . به طور كلي اين روش موقعي مورد استفاده قرار ميگيرد كه شكل دادن به روشهاي اقتصادي تر غير ممكن باشد. ازطرف ديگر مواقعي از اين روش اسفتاده مي كنند كه تعدااد زيادي از قطعه مورد درخاواست نباشد . برتري بارز اين روش در توليد قطعات پيچيده است . دوغاب،‌داخل قالبهاي گچي متخلخل كه شكل مورد نظر را دارد، ريخته مي شود . آب دو غاب جذب قالب شده و دراثر اين عمل يك لايه از مواد دو غاب به ديواره قالب بسته مي شود و شكل داخل قالب را به خود مي گيرد.دو غاب در داخلي قالب باقي مي ماند تا زماني كه لايه ضخامت مورد نظر را پيدا كند. اگر ريخته گري تو خالي نباشد ،‌نيازي به تخليه دو غاب نيست ، ولي براي قطعاتي كه توخالي باشند، قالب برگدانده ميشود . دو غاب اضافي كه روي سطح قالب قرار دارد،‌به وسيله كرادكي تراشيده مي شود . سپس لايه اضافي با كمك چاقو در ناحيه ذخيره برداشته مي شود . جدارة تشكيل دشه كه همان قطعه نهايي موردنظر است، درقالب باقي مي ماند تا زماني كه كمي منقبض شده و از قالب جدا شود. سپس مي توان آن را از قالب در آورد . بعد از اينكه قطعه مورد نظر خشك شد،‌كليه خطوط اضافي كه دراثر قالب روي آن ايجاد شده است، با چاقو زده و يا به وسيله اسفنج تميز مي شود در اين مرحله قطعه آماده پخت است . چون آب اضافي دو غاب حين ريخته گري خارج شده ، سطح دو غاب در داخل قالب پايين مي آيد. به اين دليل معمولا يك حلقه بالاي قالب تعبيه مي شود تا دو غاب را بالاي قعطه مورد نظر نگه دارد. اين حلقه ممكن است از گچ و يا از لاستيك ساخته شود . اگر ازگچ ساخه شود ، داخل آن نيز دو غاب به جدا بسه شده و با كمك چاقو تراشيده ميشود. وقتي كه جسم داخل قالب گچي كمي خشك شد،‌اسفنجي نمدار دور آن كشيده مي شود تا سطحي صاف به دست آيد . اين روش كه در بالا به ان اشاره شد ، براي ريخته گري اجسامي است كه داخل آنها خالي است . مانند گلدان، زير سيگاري ، و غيره ... اما طريقه اي هم هست كه براي ساختن اجسام توپر به كار مي رود ، به اين تريتب كه دو غاب داخل قالب مي ماند تا اينكه تمام آن سف شود. براي ساختن اشيايي كه شكل پيچيده دارند ، ممكن است قالب گچي ازچندين قعطه ساخته شود تا بتوانيم جسم داخل آن را از قالب خارج كنيم ، هر قطعه قالب شامل جاي خالي است كه قعطه قالب ديگر در آن جا مي گيرد. (‌نروماده ) اگر قالب داراي قطعات زيادباشد،‌لازم است در حين ريخته گري خوب به هم چسبد اين كار را مي توان به وسيله نوار لاستيك كه محكم به دور آن مي بنديم انجام دهيم . هنگام در اوردن جسم از قالب بايد اين نوار لاستيكي را باز كرده و برداريم. غلظت مواد ريخته گري بايد به اندازه كافي باشد كه باعث اشباع شدن قالب از آب نشود . بخصوص موادي كه شامل مقدار زيادي خاك رس هستند،‌غلظت آنها به قدري كم خواهد شد كه ريخته گري آنها مشكل شده و معايبي هم در حين ريخته گري ايجادمي شود. براي اينكه دو غاب را به اندازه كافي روان كنيم . مواد روانسازي به دو غاب اضافه مي شود.
ريخته گري دو غابي تجهيزات مورد نياز: مواد مورد نياز - مواد اوليه - آب - روانساز( سودا و سيليكات سديم يا آب شيشه ) ابزار مورد نياز - همزان الكتريكي - ترازو ( با دقت 1/0و01/0 گرم) - پارچ دردار - قالب گچي مورد نياز ( قالب قوري - لوله و قالب هاون آزمايشگاهي - دسته هاون آزمايشگاهي - دسته هاون ) - ويسكوزيته متر ريزشي با بروكفيد - لاستيك نواري - ميز كار آماده سازي دو غاب توزين و اختلاط مواد اوليه :‌در توليد فرآورده هاي سراميكي ،‌عمل توزين مواد اوليه به طور كلي مي تواند به دو روش انجام شود. (‌توزين به روش خشك ) (‌توزين به روش تر )‌در مرحله تهيه و آماده سازي بدنه ،‌روش توزين عامل بسيار مهم و تعيين كننده اي است.
توزين درحالت خشك : در اين روش ،‌عمل توزين هنگامي صورت مي گيرد كه مواد اوليه به صورت خشك و يا تقريبا خشك باشند و هنوز تبديل به دو غاب نشده باشند . هنگام توزين ،‌حتما بايد آب موجود درمواد اوليه و به طور عمده در مواد پلاستيك (‌كه از محيط اطراف جذب شده و يا در معدن در اثر ريزش برف و باران مرطوب و نمدار شده است )‌منظور شود . البته بايد توجه داشت كه تعيين دقيق مقدار رطوبت موجود در مواد اوليه،عملا غير ممكن است و اين موضوع ، يعني عدم دقت ، نقص بزرگ توزين به روش خشك است . در عمل از تك تك مواد اوليه نمونه برداري كنيد ،‌و بعد از توزين آن را در خشك كن آزمايشگاهي در دماي ( ) قرار دهيد بعد از 24 ساعت نمونه را دوباهر توزين كنيد . اختلاف وزن نسبت به وزن اوليه را محاسبه كنيد تا درصد رطوبت خاك مشخص شود . بعد از تعيين درصد رطوبت ، درصد فوق را در توزين نهايي مواد اوليه منظور كنيد . توزين در حالت تر: در اين روش،‌عمل توزين بعد از تبديل هر يك از مواد اوليه به دو غاب انجام مي شود. بديهي است كه هريك از مواد اوليه به دو غاب انجام مي شود . بديهي است كه در روش خشك گفته شد ، وجود نخواهد داشت . البته در صنعت به لحاظ نياز اين روش به چاله هاي ذخيره سازي كه فضاي بيشتري با سرماهي گذاري اوليه بالاتري را مي طلبد ،‌كمتر استقبال مي شود. در مورد توزين به روش تر ،‌حتما اين روش مطرح خواهد شد كه چگونه مي توان به مقدار مواد خشك موجود در دو غاب هر يك از مواد اوليه پي برد. در عمل براي تعيين مقدار مواد خشك موجود درغابها از رابطه برونينارت استفاده مي شود . W=(p-1) W= وزن ماده خشك موجود در يك سانتيمتر مكعب از دو غاب (‌گرم ) P= وزن ماده خشك موجود در يك سانتيمتر مكعب = وزن مخصوص ( دانسيته ) دو غاب درعمل با توزين حجم مشخصي از دو غابها،‌مي توان به وزن مخصوص يا دانسيته آنها پي برد. در مورد وزن مخصوص مواد خشك بايد اشاره شود كه به طور معمول اين مقدار حدود 5/2 تا6/2 گرم بر سانتيمتر مكعب است. بنابراني اگر با تقريب ،‌وزن مخصوص را 5/2 اختيار كنيد ، مقدار كسري برابر با خواهد بود . پس تنها عامل در اكثر موارد،‌دانسيته دو غابها است .
الك كردن : عمل توزين مواد اوليه چه به صورت تر باشد و چه در حالت خشك ،‌ابعاد ذرات دو غاب بدنه موجود در حوضچه هاي اختلاط نبايد از حدو مورد نظر بزرگتر باشد. تعيين ابعاد ذرات موجود در دو غاب،‌قسسمتي از اعمال روزمره آزمايشگاهها ي خطوط توليد است و اين عمل در پايان نمونه برداري در حين سايش انجام گيرد و سپس تخليه انجام مي گيرد. در هر صورت ،‌انتخاب دانه بندي مناسب بستگي به فاكتور هاي ذيل دارد: - نوع بدنه ( چيني ظروف- چيني بهداشتي ،- نوز) - نوع مواد اوليه و درصد انها (‌- بالكي) - خواص ريخته گري ( تيكسوتراپي ،‌- سرعت ريخته گري) - جذب آب - عمل الك كردن براي جداسازي ذرات درشت و كنترل خواص دوغاب بسيار ضروري است. زيرا اولا وجود ذرات درشت عوارض گسترده اي بر پروسس ريخته گري ،‌- خواص دو غاب ،‌- خواص حين پخت و خواص محصول نهايي دارد. ثانيا ،- كنترل دانه بندي براي خواص دو غاب شديدا تحت تاثير دانه بندي بوده و نبايد از حد متعارفي كمتر باشد . انتخاب و شماره الك توسط استاد كار انجام خواهد شد. عموما به لحاظ وجود ذرات درشت و حضور ناخالصيهاي گسترده در مواد اوليه نظير موادآلي ،‌ريشه درختان ،‌كرك و پشم كه به منظور افزايش استحكام خام به بعضي از مواد اوليه زده مي شود ،‌غالبا چشمه هاي الك زود كورمي شود و ادامه عمل الك كردن را با مشكل مواجه مي كند. لذا غالبا الكهارا چند طبقه منظور كرده و طبقات نيز از مش كوچك به مش بزرگ از بالا به پايين قرار مي گيرند تا دانه هاي درشت تر بالاو دانه هاي كمتري روي الك زيرين كه داراي چشمه هاي ريزتري است ،‌قرار گيرد .
آهن گيري: مي دانيد كه اهن با ظرفيتهاي مختلف در مواد اوليه يا بدنه هاي خام وجود دارد، در مجموع چهار شكل متفاوت آهن وجود دارد. - به صورت يك كاتيون در داخل شبكه بلوري مواد اوليه - به صورت كانيهاي مختلف كه به عنوان ناخالصيهاي طبيعي با مواد اوليه مخلوط مي شوند . - به صورت ناخالصيهاي مصنوعي كه در اثر سايش صفحات خرد كننده سنگ شكنها و آسيابها به وجود آمده اند . فقط در حالت اخير آهن به صورت فلزي يا آزاد وجود دارد. لذا در اين حالت توانايي مي توان عمل اهن گيري را انجام داد. - به صورت تركيبات دو وسه ظرفيتي آهن كه در اثر زنگ زدگي خطوط انتقال دو غاب ،‌- وارد دوغاب ميشوند.در توليد فرآورده هاي ظريف براي تخليص دو غاب از ذرات آهن موجود ،‌- از دستگاههاي آهنر يا مگنت دستي استفاده مي شود . دستگاههاي آهنربا اگر چه عامل بسيار موثري در حذف آهن و تخليص دو غاب هستند،‌- ولي ماسفانه بايد توجه داشت كه اين دستگاهها قادر به جذب تمام مواد وذرات حاوي آهن نيستند . در بين كانيهاي مهم آهن، كانيهاي مگنيت ( ) سيدريت ( )‌و هماتيت( ) به ترتيب داراي بيشترين خاصيت مغناطيسي هستند و بنابراين ،‌به وسيله دستگاههاي آهنربا جذب مي شوند . در كانيهاي ليمونيت ( ) ماركاسيت و پيريت ( ) خاصيت مغناطيسي به ترتيب كاهش يافته و به همين دليل در عمل ، احتمال جدا سازي اين كانيها به وسيله دستگاههاي آهنربا بسيار كم است . در مورد آهن فلزي بديهي است كه دستگاههاي آهنربا به راحتي قادر به جذب آنها هستند. تنظيم خواص رئولوژيكي بعد از اينكه دو غاب الك و آهنگيري شد، دو غاب رابه چاله ذخيره يا به ظرف مخصوص انتقال مي دهيم . در حالي كه همزن الكتريكي با دور كم در حال هم زدن آرام دو غاب است ، از چاله نمونه برداري كرده و آزمونهاي زير را اعمال مي كنيم تا فرم پيوست تكميل شود. همان طوريكه در فرم ملاحظه مي شود ،
شامل مراحل زير است :‌اولين مرحله تنظيم دانسيته دوغاب است . بدين معنا كه سرعت ريخته گري يا مدت زماني كه لازم است دو غاب در قالب گچي بماند و به ضخامت مورد نظر برسد، تنظيم شود . بدين منظور در ابتدا قالب گچي مناسب را كه داراي عمر مشخص و درصد آب به گچ ثابت و معيني است آماده مي كنيم و يا اينكه مي توانيم از يك مدل مشخص در خط توليد استفاده كنيم بعد از بستن قطعات قالب، آنها را با كمك يك نوار پهن لاستيكي نظير تيوپ دوچرخه يا لاستيكي كه از تيوپ ماشين معمولي بريده شده است ، كاملا در كنار هم جذب و محكم كنيد . دو غاب حاصل را به داخل قالب گچي بريزيد . و بعد از مدت زمان مشخصي ،‌در نتيجه واكنشهاي متقابل بين دو غالب وقالب گچي ،‌لايه اي درمحل تماس دو غاب و قالب ايجاد مي شود .‌واضح است كه قطر لايه ايجاد شده بستگي به زمان توقف دو غالب در قالب دارد. بعد از گذشت مدت زمان مورد نظر ، دو غاب اضافي موجود قالب تخليه مي شود . اين زمان به طور عمده بستگي به قطر فراورده مورد نظر وسرعت ريخته گري دو غاب دارد . بايد توجه داشت كه تراكم قالب گچي نيز عامل موثري در زمان ريخته گري است . ولي براي ايجاد زمينه اي در ذهن دانش آموزان بايد اشاره شود كه با توجه به كليه عوامل موثر زمان ريخته گري به عنوان مثال براي فرآورده ها بهداشتي به قطر حدود 10 يا 11ميليمتر،‌معمولا حدود تا 2 ساعت ،‌براي ظروف غذا خوري از جنس ارتن و ريا پرسلان با قطر2 تا 3 ميليمتر ، حدود 15 تا 25 دقيقه و براي چيني استخواني به همين قطر حدود 2 تا 5 دقيقه است .سپس قالب و فرآورده شكل يافته در آن براي مدتي به حال خود گذاشته مي شود تا لايه ايجاد شده ،‌تا حدودي خشك و در نتيجه كوچكتر شود .(‌دراثر انقباض تر به خشك ) بعد از اين مرحله قطعه شكل يافته به راحتي از قالب جدا شده و مي توان آ نرا از داخل قالب گچي خارج كرد درهنگام تشكيل لايه در محل تماس قالب و دوغاب،‌حجم دو غاب موجود در غاب به مرور كمتر وكمتر مي شود . به همين دليل لازم است كه مجددا مقاديري دو غاب به داخل قالب گچي ريخته شود. با توجه به اينكه انجام اين عمل نيازمند نيروي انساني بيشتر و نيز مراقيت دايم است، در عمل قطعه اي در دهانه قالب گچي تعبيه شده كه اصطلاحا به آن ((‌حلقه 45)) گفته مي شود. اين حلقه باعث ايجاد ستوني از دو غاب برفراز قطعه ساخته شده مي شود. در نتيجه با كاهش حجم دو غاب موجود در قالب ،‌نيازي به اضافه كردن مجدد دو غاب نيست. در بعضي موارد به جاي تعبيه حلقه از قيف استفاده مي شود . حلقه ها مي توانند از جنس لاستيك و يا گچ باشند. در صورتي كه حلقه ها از جنس گچ باشند، در سطح داخلي حلقه ،‌در محل تماس دو غاب با گچ نيز لايه اي ايجاد ميشود . اين لايه اضافي و نيز ديگر قسمتهاي اضافي ( به عنوان مثال اضافات ايجاد شده در محل درز قالبها)‌در مرحله پرداخت بريده و جدا مي شوند . قالبهاي گچي به ندرت يك تكه هستند. بدين معني كه معمولا فراورده ها در قالبهاي چند تكه شكل مي يابند. از طرف ديگر در مورد بعضي از شكلهاي پيچيده لازم است مدل اصلي به چند قعطه مختلف تجزيه شده و هر يك از قسمتها جداگانه شكل بگيرند . سپس، بعد از خروج از قالبها به يكديگر متصل شوند. به عنوان مثال ، در مورد ظروف خانگي دسته فنجانها و يا لوله قوريها به صورت مجزا شكل يافته و پس از خروج از قالب، به بدنه اصلي چسبانده مي شوند . مرحله چسباندن قطعات در شكل دادن فراورده ها داراي اهميت زياد است . درشكل دادن به روش ريخته گري به صورت كاملا ساده نشان داده شده است . تعيين زمان ريخته گري دو غابي وسايل مورد نياز مواد اوليه مورد نياز تعداد پنج عدد قالب گچي دو غاب تنظيم شده ليواني كوليس يا ريز سنج كاغذ ميليمتري سيم يا فنر براي برش دادن خط كش كرنومتر مدت زماني كه دو غاب در داخل قالب باقي مي ماند ، در قطر لايه ايجاد شده ويا به عبارت ديگر در ضخامت بدنه خام ، تاثير بسيار زيادي دارد. بدني معني كه چنانچه دو غاب اضافي همچنان در قالب باقي مانده و تخليه نشود و اصطلاحا (( زمان بيشتر به دو غاب داده شود ))‌،‌قطر لايه ايجاد شده افزايش خواهديافت . بايد توجه داشت كه با گذشت زمان ،‌سرعت تشكيل ثابت نبوده و به مروركند تر مي شود . چرا كه در اين شرايط ،‌خود لايه ايجاد شده به صورت سدي در ماقابل نفوذ آب به داخل گچ ،‌عمل مي كند. همچنانكه مشاهده مي شود ، اين عامل كه اصطلاح (( ريخته گري)) به آن اتلاق مي شود، عامل مهمي درتعيين قطر بدنه خام (‌ودر نتيجه ديگر خصوصيات بدنه ) و نيز سرعت توليد است . به همين دليل ،‌يكي از مهمترين خواص دوغابها مقدار ( سرعت ريخته گري) آنها است. به طور مشخص ،‌سرعت ريخته گري عبارت است از ضخامت ايجاد شده در واحد زمان و عوامل موثر در ان كلا عبارتند از : فشار، درجه حرارت ،‌وزن مخصوص دو غاب و بالاخره مقاومت لايه ريخته گري شده در برابر عبورآب . دو عامل اخير وبخصوص آخرين عامل ، مهمترين مواردي هستندكه عملادرصنعت مورد توجه قرار مي گيرند . مقاومت لايه ريخته گري شده در برابر عبور آب ، خود به عوامل ديگري بستگي دارد كه به طور خلاصه عبارتند از:نوع و يا دانه بندي مواد و نيز چگونگي و يا شدت روان شدگي ( به عبارت ديگر تجمع و ياتفرق ذرات )ضمنا بايد توجه داشت كه در سرعت ريخته گري ،‌عوامل خارجي ديگري كه ربطي به خواص دو غاب ندارند نيز موثر هستند. مانند تراكم و يا تخلخل قالب گچي و درصد رطوبت موجود در آن.ضخامت لايه ايجاد شده رابطه مستقيم با جذر زمان ريخته گري دارد. بنابراين ،‌بين زمان و ضخامت لايه رابطه زير بر قرار خواهد بود: ويا در رابطه فوق ، 1ضخامت لايه ايجاد شده ( به ميلي متر )‌و t زمان (‌به دقيقه)‌وk ضريب ثابت است . به همين دليل سرعت ريخته گري معمولا به صورت بيان مي شود . رابطه فوق بدين معني است كه به عنوان مثال چنانچه ساخت فرآورده اي به ضخامت يك ميليمتر ،‌چهاردقيقه زمان احتياج داشته باشد، ساخت فراورده ديگر به ضخامت 2 ميليمتر در همان شرايط به شانزده دقيقه زمان نياز دارد. با اين توضيحات ، براي تعيين سرعت ريخته گري و در كنار آن زمان ريخته گري، به صورت زير عمل كنيد: نخست روي قالبهاي گچي به ترتيب شماره يك تا پنج بزنيد ، سپس دو غاب را به ترتيب در اولين قالب ريخته و بلافاصله كرنومتر را بزنيد .بلافاصله قالب گچي ديگر و درنهايت پنجمين قالب گچي را از دو غاب پركنيد. بعد از يك دقيقه اولين قالب را و بعد بترتيب زيرا قالبهاي ديگر را تخليه كنيد : بعد از اينكه آخرين قطرات دو غاب از چكه كردن باز ايستاد ،‌قالب را به حال خود بگذاريد و بعد از زمان مشخصي كه جداره تشكيل شده در اثر انقباض از قالب جدا شد، آن را از قالب بيرون آورد. با ريز سنج يا با كمك كوليس اندازه گيري كنيد.سپس با كمك كاغذ ميليمتر و با انتخاب دو محور xوy به ترتيبx را به عنوان زمان و y را به عنوان ضخامت با كمك نقطعه يابي رسم كنيد. در اين حالت با رسم 1 بر حسب خواهيد توانست ضريب خط را بدست آوريد كه همان سرعت ريخته گري است . و از انجا مي تونيد به راحتي هر ضخامتي را كه مي خواهيد ، تعيين و زمان آن را محاسبه كنيد. مثلا اگر سرعت ريخته گري 5/0 باشد،يعني ( ميليمتر مربع بر دقيقه) براي داشتن بدنه اي به ضخامت 8/0 سانتيمتر به صورت زير محاسبه مي كنيم . دقيقه َ2.8 = 60 ÷ 128 يعني بايد 2 ساعت و 8 دقيقه زمان بدهيد تا جداره مورد نظر تشكيل شود.يكي از عوامل موثر درسرعت ريخته گري ، وزن مخصوص دو غاب و يا به عبارت ديگر نسبت بين مواد جامد و آب است . علاوه بر اين مورد افزايش مقار اب در دو غاب ريخته گري باعث اشباع سريعتر قالبها مي شود كه به نوبه خود خشك كردن كامل قالبها باعث فرسودگي سريعتر آنها و نهايتا كاهش بازدهي قالبهامي شود . وزن مخصوص دو غابهاي ريخته گري بايد حتي المقدور بالا باشد. علت اساسي استفاده از روان كننده ها در دوغابهاي ريخته گري ،‌همين مورد است . چرا كه بدون استفاده از روان كننده ها تهيه دو غابهايي با وزن مخصوص بالا ، تقريباً غير ممكن است . به همين دليل يكي از خواص مخصوص آنها است . در توليد فرآورده هاي سراميك ظريف به طور معمول وزن مخصوص دو غاب ريخته گري بين 5/1 تا است. يكي ديگر از خصوصيات بسيار مهم در دو غابهاي ريتخه گري و يسكوزيته آنهاست .ويكسوزيته يك دو غاب علي رغم وزن مخصوص بسيار بالاي آن بايد درحدي باشد كه درمقياس صنعتي ، دوغاب به راحتي از الكها و يا خطوط لوله عبور كند و درعين حال بتواند تمامي زواياو گوشه هاي قالب را پركند. مساله مهم درارتباط بين وزن مخصوص ويسكوزيته و روان كننده اين موضوع است كه اگر چه تغييرات وزن مخصوص ويا به عبارت ديگر مقدار آب و نيز تغييرات مقدار روان كننده در ويسكوزيته موثر هستند. ولي تغييرات مقدار روان كننده در مقدار وزن مخصوص بيتاير است ودر نتيجه در خطوط توليد كارخانه ها ،‌با اندازه گيري و يسكوزيته و وزن مخصوص در بسياري موارد مي توان به تغييرات مقدار روان كننده پي برد. علاوه برسرعت ريخته گري ،‌وزن مخصوص و ويسكوزيته عامل ديگري نيز دردو غاب بدنه خام اهميت دارد و آن تيكسو تروپي است ؛ خاصيت تيكسوتر را به طور خلاصه مي توان به صورت ‍«افزايش ويسكوزيته دو غاب دراثر سكون و ركود و كاهش ويسكوزيته دراثر هم خوردن» تعريف كرد. دو غابي كه داراي تيكسوتر و پي زيادي است بلافاصله بعد از هم خوردن ممكن است داراي رواني مناسبي باشد. ولي بعد از مدتي سكون ، ويسكوزيته آن به شدت افزايش مي يابد. افزايش ويسكوزيته در اثر خاصيت تيكسوتروپي، گاه به حدي است كه چنانچه ظرف حاوي دو غاب بعد از مدتي سكون ،‌وارونه شود، دو غاب داخل آن از ظرف خارج نمي شود. در دو غابهاي ريخته گري به طور معمول مقادير كمي تيكسوتروپي مطلوب است. چراكه تيكسوتروپي باعث افزايش سرعت ريخته گري شده و درعين حال استحكام و ثبات خاصي را در قطعه ريخته گري شده ايجاد مي كند.( بايد دقت شود كه منظور ، ايجاد استحكام و در حالت پلاستيك است ( درصورتي كه استحكام خشك مد نظر باشد، خلاف اين موضوع صحيح است . بدين معني است كه رسهاي روان شده به دليل تراكم بيشتر داراي استحكام خشك بسيار بيشتري هستند. استحكام خشك زيادتر فرآروده هايي كه به روش ريخته گري شكل مي يابند نيز به همين دليل است ). از طرف ديگر وجود مقدار زيادي تيكسوتروپي دردوغاب نيز باعث بروز اشكالاتي مي شود؛ تيكسوتروپي زياد در دو غاب باعث سست شدن فراورده ريختهگري مي شود ،‌به نحوي كه چنين فرآورده هايي را مي توان به راحتي تغيير شكل داده و با تكان دادن ممكن است مجددا به دو غاب تبديل شوند. به عنوان يك قانون كلي ، روان كننده ها نه تنها باعث كاهش ويكسوزيته مي شوند، بلكه تيكسوتروپي رانيز كاهش مي دهند. بنابراين ،‌مقدار مصرف روان كننده بايد به نحوي تنظيم شود كه با ايجاد بيشترين مقدار رواني ، مقادير كمي تيكسوتروپي در دو غاب ايجاد شود. دليل استفاده مشترك از سليكات و كربنات سديم به عنوان روان كننده همين مورد است. سيليكات سديم اگر چه باعث رواني دو غاب مي شود. ولي تيكسوتروپي ار ينز به طور كامل از بين مي برد . در حالي كه كربنات سديم درعين حال كه باعث كاهش ويسكوزيته مي شود، مقادير كمي تيكسوتروپي در دو غاب باقي ميگذارد. استفاده توام از اين دو روان كننده باعث ايجاد بيشترين حد رواني و در عين حال وجود مقدار كمي تيكسوتروپي در دو غاب مي شود.
روشهاي ساخت ماهيچه هاي سراميكي: ماهيچه هاي سراميكي به خاطر دقت ابعادي بالا در ريخته گري قطعات دقيق به كاربرده مي شوند. اين ماهيچه ها به دو روش دو غابي و فشاري ساخته مي شوند كه از نظر نوع نسوز يكسان بوده ولي چسبهاي آنها با هم تفاوت دارد. دو روش ساخت ماهيچه ها در ذيل به اختصار شرح داده مي شود:
الف ) ماهيچه هاي ساخت سراميك به روش دو غابي در اين روش يك مدول مومي به شكل ماهيچه موردنظر ( با احتساب انقباضات موم و مواد سراميكي پس از خشك شدن) ساخه مي شوند. پس اين مدل مومي را در داخل يك قالب مي گذاريم به طوريكه يك قسمت از مدل جهت خروج موم و وارد كردن دو غاب سراميك به آن درنظر گرفته شود. پس دو غاب گچي آماده شده را در درون قالب حاوي مدل مومي مي ريزيم و پس ازسفت شدن دو غاب گچ آنرا از قالب خارج كرده و در خشك كن قرار مي دهيم پس از خشك شدن قالب گچي مدل مومي را ذوب كرده و از قالب گچي خارج مي نماييم. دو غاب سراميكي تهيه شده به نسبت 70% پودر نسوز و 30% آب را درون قالب گچي تهيه شده مي ريزيم و پس ازخشك شدن مواد سراميكي قالب گچي را شكسته و ماهيچه سراميكي شكل گرفته را خارج مي نماييم . اين ماهيچه را پس از خشك كردن در دمايي حدود950 درجه سانتي گراد پخت مي كنيم. ماهيچه تهيه شده پس از پخت كامل و خنك شدن آماده استفاده مي باشد. قابل ذكر است كه چسبهاي مورد استفاده دراين روش از نوع سيليكاتها مي باشد ونسوز مصرفي داراي عدد ريز دانگي 200يا325 مش است.
بـ )ساخت ماهيچه هاي سراميكي به روش فشاري: در اين روش پودر نسوز مورداستفاده كه ازنوع زيركني يا آلومينيايي يا آلوميناسيليكاتي مي باشد را با رزين مخصوص(موم و..)‌مخلوط كرده و به صورت خمير در مي آوريم خمير تهيه شده ار در درون قالب ماهيچه كه عمدتااز جنس فلز مي باشدبه روش فشاري تزريق مي كنيم . ماهيچه تهيه شده را حرارت داده تا به آرامي موم آن خارج گردد. سپس اين ماهيچه رادر دماي 950 درجه سانتيگراد تحت عمليات نهايي پخت قرار مي دهيم. پس ازپخت كامل ماهيچه و خنك نمودن آن تا دماي محيط ماهيچه مذكور مورد استفاده قرار مي گيرد.

+ نوشته شده در  ساعت   توسط mostafa sakhravi  | 

ريخته گري تحت فشار

ريخته گري تحت فشار نوعي ريخته گري مي باشد كه مواد مذاب تحت فشار بداخل قالب تزريق مي شود . اين سيستم بر خلاف سيستم ريژه كه مذاب تحت نيروي وزن خود بداخل قالب مي رود امكانات توليد قطعات محكم وبدون مك مي باشد. دايكاست كوتاهترين راه توليد يك محصول از فلز مي باشد .

 


مزاياي ريخته گري تحت فشار:


1-توليد انبوه و با صرفه


2-توليد قطعه مرغوب باسطح مقطع نازك


3-توليد قطعات پيچيده


4-قطعات توليد شده در اين سيستم از پرداخت خوبي بر خوردار است.


5-قطعه توليد شده استحكام خوبي دارد.


6-در زمان كوتاه توليد زيادي را امكان مي دهد.

 


معايب ريخته گري تحت فشار :


1-هزينه بالا


2-وزن قطعات در اين سيستم محدويت دارد حداكثر 3 8 K g


3-از فلزاتي كه نقطه ذوب آنها در حدود آلياژ مس مي باشد مي توان استفاده نمود.

 

ماشينهاي دايكاست:

اين ماشينها دو نوع كلي دارند:


1-ماشينهاي با محفظه تزريق سرد: cold chamber در اين نوع سيلندر تزريق خارج از مذاب بوده و فلزاتي مانند A L و C u و m g تزريق مي شود و مواد مذاب توسط دست به داخل سيلندر تزريق منتقل مي شود .


2-ماشينهاي با محفظه تزريق گرم : Hot chamber در اين نوع سيلند تزريق داخل مذاب و كوره بوده و فلزاتي مانند سرب خشك و روي تزريق مي شود و مذاب اتوماتيك تزريق مي شود.


محدوديتهاي سيستم سرد كار افقي:

1-لزوم داشتن كوره هاي اصلي و فرعي براي تهيه مذاب و رساندن مذاب به داخل سيلندر تزريق


2- طولاني بودن مراحل كاري


3-امكان بوجود آمدن نقص در قطعه بدليل افت حرارت مذاب آكومولاتور يك سيلندر دو طرفه بازشوكه داخل آن يك پيستون شناور وجود دارد كه يك سمت آن فشار گازاز نوع گاز بي اثر مانند گاز ازت كه در سيستم با D Oمشخص مي باشد ، تحت فشار است و در سمت ديگر فشار روغن كه در سيستم با P N مشخص مي باشد.

وظيفه آكو مولاتور:

چون پيستون شناور آكومولاتور بوسيله فشار روغن شارژ شده است و پشت آن هم فشار متراكم گاز وجود دارد در زمان تزريق وقتي فشار روغن در يك سمت كم مي شود . فشار گاز با سرعت زيادي پيستون را به سمت روغن هدايت نموده و باعث سرعت زيادي در ضربه دوم تزريق شده و مذاب را در مدت زمان كوتاه بداخل حفره قالب مي راند .


نقش آكومولاتور:

اگر اين اجزاء عمل نكند و در واقع نقشي در تزريق مذاب نداشته باشد قطعات داراي مك و بد تزريقي بوده و استحكام لازم راندارد.


بسته نگه داشتن قالب : (قفل قالب D I E L O C K )

فشارهايي كه در ريخته گري تحت فشار در فلز مذاب به وجود مي آيند مستلزم داشتن تجهيزات ويژه جهت بسته نگهداشتن قالب مي باشد تااز فشاري كه براي باز كردن قالب در طي تزريق بوجود مي آيدوباعث پاشيدن فلزاز سطح جدا كننده قالب مي شود اجتناب شده و تلرانسهاي اندازه قطعه ريختگي تضمين گردد. قالبهاي دايكاست بصورت دو تكه ساخته مي شوند يك نيمه قالب به كفشك ثابت ( طرف تزريق) و نيمه ديگر به كفشك متحرك ( طرف بيرون انداز) بسته مي شود . قسمت متحرك قالب بوسيله ماشين روي خط مستقيم به جلو و عقب مي رود و به اين ترتيب قالب دايكاست باز و بسته مي شود. بسته نگهداشتن هردونيمه قالب طی تزريق ،بسته به طراحي ماشين ريخته گري تحت فشار با روشهاي مختلف صورت مي گيرد. يك روش اتصال با نيرو است كه از طريق اعمال يك نيروي هيدروليكي بر كفشك متحرك به وجود مي آيد.روش ديگر،اتصال با فرم به كمك قفل و بند هاي مكانيكي صورت مي گيرد اين قفل و بند ها فقط با يك نيروي كوچك پيش تنش كار مي كنند . در هر دو مورد يك بسته نگهدارنده ايجاد مي گردد كه با نيروي به وجود آمده باز كننده در قالب دايكاست مقابله مي كند. نيروي باز كننده نتيجه فشار تزريق است كه هنگام پر كردن قالب ايجاد مي گردد.


سيستم قفل قالب به روش اتصال با نيرو معمولا شامل قسمتهاي زير است :


1-دوميز ثابت جلو و عقب و يك ميز متحرك مياني


2-چهار عدد بازوي راهنما و هشت عدد مهرة فيكس


3-سيلندر محرك ميز متحرك


قدرت قفل شوندگي قالب بستگي به موارد زير دارد:


1-قدرت پمپ


2-قدرت سيلندر محرك ميز


3-قدرت چهار عدد ميله راهنما


4-زاويه شيب گوه ها

+ نوشته شده در  ساعت   توسط mostafa sakhravi  |